

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code WFM01_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

May 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks			
1.		$3x^2 5x+1=0 \text{ has roots} ,$					
	+ =	$\frac{5}{3}, = \frac{1}{3}$	Both + $=\frac{5}{3}$ and $=\frac{1}{3}$, seen or implied	B1			
	+=	$= \frac{2+2}{2} = \dots$	Attempts to substitute at least one of their $\begin{pmatrix} 2 + 2 \end{pmatrix}$ or their into $\frac{2 + 2}{2}$	M1			
	² + ² =	$=(+)^2 2 = \dots$	Use of a correct identity for 2 + 2 (May be implied by their work)	M1			
	— + — =	$=\frac{\left(\frac{5}{3}\right)^2 2\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)} = \frac{\frac{19}{9}}{\frac{1}{3}} = \frac{19}{3}$	dependent on ALL previous marks being awarded $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$ or 6.3 o.e. from correct working	A1 cso			
				(4)			
			Question 1 Notes	4			
		5 1	$5 \pm \sqrt{13}$ 5 $\sqrt{13}$				
1.	Note	Finding $+ = \frac{3}{3}, = \frac{1}{3}$	by writing down , $=\frac{3+\sqrt{13}}{6}, \frac{3-\sqrt{13}}{6}$ or by applying				
		$+ = \left(\frac{5+\sqrt{13}}{6}\right) + \left(\frac{5-\sqrt{13}}{6}\right) = \frac{5}{3} \text{ and } = \left(\frac{5+\sqrt{13}}{6}\right) \left(\frac{5-\sqrt{13}}{6}\right) = \frac{1}{3} \text{ scores BC}$					
	Note	Those candidates who then	apply $+ = \frac{5}{3}$, $= \frac{1}{3}$ having written down/applied				
		$, = \frac{5 + \sqrt{13}}{6}, \frac{5 - \sqrt{13}}{6}$ in	part (a) can only score the M marks.				
	Note	Note Give M0M0A0 for $-+-=\frac{\left(\frac{5+\sqrt{13}}{6}\right)}{\left(\frac{5-\sqrt{13}}{6}\right)}+\frac{\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)}=\frac{19}{3}$					
	Note Give M0M0A0 for $- + - = \frac{2 + 2}{-1} = \frac{\left(\frac{5 + \sqrt{13}}{6}\right)^2 + \left(\frac{5 - \sqrt{13}}{6}\right)^2}{\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)} = \frac{19}{3}$						
	Note	Note Give M0M0A0 for $- + - = \frac{(-+-)^2 - 2}{2} = \frac{\left(\left(\frac{5+\sqrt{13}}{6}\right) + \left(\frac{5-\sqrt{13}}{6}\right)\right)^2 - 2\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)} = \frac{1}{2}$					
	Note	Allow B1 for both $S = \frac{5}{3}$ a	and $P = \frac{1}{3}$ or for $= \frac{5}{3}$ and $= \frac{1}{3}$				
	Note	Give final A0 for 6.3 or 6.3	3 without reference to $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$				

Question Number		Scheme	Notes	Marks
2. (a)	$AB = \left(\begin{array}{c} \end{array} \right)$	$ \begin{array}{cccc} 3 & 1 & 2 \\ 1 & 0 & 5 \end{array} \left(\begin{array}{cccc} 2 & 4 \\ k & 2k \\ 3 & 0 \end{array}\right) $		
	=	$ \begin{array}{ccc} 6 & k & 6 & 12 + 2k & 0 \\ 2 + 0 + 15 & 4 + 0 + 0 \end{array} \right) $	Obtains a 2 2 matrix consisting of 4 elements with at least two correct elements which can be simplified or un-simplified	M1
	(Correct <i>un-simplified</i> matrix for AB	AI (2)
	=	$\begin{pmatrix} k & 12+2k \\ 13 & 4 \end{pmatrix}$		(2)
(b)	$\left\{ \det(\mathbf{AB}) \right\}$) = 0		
	(k)(4) 13(12+2k) = 0		Applies " <i>ad</i> bc " = 0 on their 2 2 matrix for AB and solves the resulting equation to give $k =$	M1
	4k 1 $22k$ $k = -$	56 26k = 0 = 156 $\frac{156}{22} \text{ or } \frac{78}{11} \text{ or } 7\frac{1}{11}$	$k = \frac{156}{22} \text{ or } \frac{78}{11} \text{ or } 7\frac{1}{11}$ Accept any exact equivalent form for k Condone 7.09	A1
				(2)
				4
			Question 2 Notes	
2. (a)	Note	Give A1 (ignore subsequent wor by an incorrect simplified answe	king) for a correct un-simplified answer which is later for a correct un-simplified answer which is later for a	ollowed
(b)	Note	Give M1A1 for sight of the corre	ect answer in part (b).	
	Note	Condone the sign error in applyi	ng $13(12+2k) = 0$ to give $156+26k = 0$ (o.e.	.)
		E.g. Allow M1 for $\begin{vmatrix} k & 12 + 1 \\ 13 & 4 \end{vmatrix}$	$\begin{vmatrix} 2k \\ -k \end{vmatrix} = 0 \qquad 4k 156 + 26k = 0 \qquad k = \dots$	
	Note	Give final A0 for 7.0 or 7.1 o	or 7.09 without reference to $\frac{156}{22}$ or $\frac{78}{11}$ or $7\frac{1}{11}$	

Question Number	Scheme		N	otes	Marks		
3.	Required to prove by induction the result $\prod_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \frac{1}{(n+1)(n+2)}, n$						
			S	shows or states LHS = $\frac{1}{3}$			
Way 1	$n = 1: LHS = \frac{1}{3}, RHS = \frac{1}{2}, \frac{1}{(2)(3)} = \frac{1}{3}$	and s	shows either RHS	$S = \frac{1}{2} \frac{1}{(1+1)(2+1)} = \frac{1}{3}$	B1		
	or RHS = $\frac{1}{2}$ $\frac{1}{(2)(3)} = \frac{1}{3}$ or RHS = $\frac{1}{2}$ $\frac{1}{6} = \frac{1}{3}$						
	(Assume the result is true for $n = k$)						
	$\int_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$	(+1)(k+)	$\frac{2}{(1+1)(k+1+2)}$	Adds the $(k+1)^{\text{th}}$ term to the sum of k terms	M1		
	$=\frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$			<u></u>			
	$\frac{2}{1} \frac{(k+1)(k+2)}{(k+1)(k+2)(k+3)}$		<u>+</u>				
	$ = \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)} $	$\frac{1}{1}$	dependent o	on the previous M mark			
	$\begin{array}{c} 2 (k+1)(k+2)(k+3) (k+1)(k+2)(k+3) \\ \text{or} \\ \end{array}$						
	$\begin{pmatrix} \text{denominator for their} \\ 1 & (k+3) & 2 \end{pmatrix}$						
	$= \frac{1}{2} \left(\frac{1}{(k+1)(k+2)(k+3)} \right)$		50	econd and third fractions			
		1	1	1 1			
	$=\frac{1}{2} \frac{1}{(k+2)(k+3)}$ Obtain	$\frac{1}{2}$ $\overline{(}$	$\overline{k+2}(k+3)$ or	$\overline{2}$ (k+1+1)(k+1+2)	A1		
			ł	by correct solution only			
	If the result is true for $n = k$, then it is true	for $n =$	k+1. As the resu	It has been shown to be	A1 eso		
	true for $n = 1$, then the	result is	s true for all n (()	AI CSU		
	Final A1 is dependent on all pre-	evious n	narks being scored	1 in that part.	(5)		
	It is gained by candidates conveying	ng the ic	leas of all four un	derlined points			
		.011 01 a.			5		
Way 2	The M1dM1A1 marks for Alternative W	ay 2	J				
-	^{<i>k</i>+1} 2 1 1		2	Adda the $(L+1)^{th}$ term			
	$\frac{2}{r=1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+1)(k+2)} + \frac{1}{(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)$	+1)(k+	$\frac{2}{(1+1)(k+1+2)}$	to the sum of k terms	M1		
	(k+1)(k+2)(k+3) = 2(k+3) + 2(2) dependent on the previous M mark						
	$= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 2(2)}{2(k+1)(k+2)(k+3)}$ Makes 2(k+1)(k+2)(k+3) a common dependent of an their three functions						
	$\frac{13}{12} \cdot \frac{(l+1)(l+2)(l+3)}{(l+1)(l^2+5l+4)} = \frac{l^2+5l+4}{(l+2)(l+2)} = 2$						
	$= \frac{k^{2} + 0k^{2} + 9k + 4}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+3k+3)}{2(k+1)(k+2)(k+3)}$	$\frac{(-4)}{(+3)} =$	$\frac{k + 3k + 4}{2(k+2)(k+3)} =$	$\frac{(k+2)(k+3)-2}{2(k+2)(k+3)}$			
	$\frac{2(n+1)(n+2)(n+3)}{2(n+1)(n+2)(n+3)}$	<u>+ 5)</u> 1	$\frac{2(n+2)(n+3)}{1}$	$\frac{2(n+2)(n+3)}{1}$			
	$=\frac{1}{2}$ $\frac{1}{(1-2)(1-2)}$ Obtain	$\frac{1}{2} \frac{1}{2}$	$\frac{1}{(k+2)(k+3)}$ or	$\frac{1}{2} \frac{1}{(k+1+1)(k+1+2)}$	A1		
	2 (k+2)(k+3)	X]	by correct solution only			

	Question 3 Notes							
3.	Note	LHS = RHS by itself or LHS = RHS = $\frac{1}{3}$ is not sufficient for the 1 st B1 mark.						
	Note Way 2	The 1 st A1 can be obtained by e.g. using algebra to show that $\frac{k+1}{r=1} \frac{2}{r(r+1)(r+2)}$ gives						
		$\frac{(k^2+5k+4)}{(k+2)(k+3)}$ and by using algebra to show that $\frac{1}{2} = \frac{1}{(k+2)(k+3)}$ also gives $\frac{(k^2+5k+4)}{2(k+2)(k+3)}$						
	Note	Moving from $\frac{1}{2} = \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ to $\frac{1}{2} = \frac{1}{(k+2)(k+3)}$						
		with no intermediate working is 2 nd M0 1 st A0 2 nd A0.						
Way 3	The M1d	M1A1 marks for Alternative Way 3						
	$\int_{r=1}^{k+1} \overline{r(r+r)}$	$\frac{2}{1)(r+2)} = \frac{1}{2} \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)} \qquad \text{Adds the } (k+1)^{\text{th}} \text{ terms} \text{M1}$						
	$=\frac{1}{2}$ $\frac{1}{(k)}$	$\frac{1}{2} \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} \frac{1}{(k+2)(k+3)} \text{dependent on the previous M mark} \\ \text{This step must be seen in Way 3} \text{dM1}$						
	$=\frac{1}{2}$ $\frac{1}{(k)}$	$\frac{1}{(k+2)(k+3)}$ Obtains $\frac{1}{2} = \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} = \frac{1}{(k+1+1)(k+1+2)}$ A1						
		by correct solution only						

Question Number	Scheme		Ν	lotes	Marks
4. (a) Way 1	$\left\{x = 4t, \ y = \frac{4}{t} \Rightarrow \right\} \ 3\left(\frac{4}{t}\right) 2(4t) = 10$)	Substitutes $x = 4t$ a equation to o	nd $y = \frac{4}{t}$ into the printed btain an equation in <i>t</i> only	M1
	$8t^{2} + 10t$ $12 = 0$ or $4t^{2} + 5t$ $6 = 0$ (can be implied)		Note: E.g. 12 $8t^2 =$ or $8t^2 + 10t = 12$ at	A correct 3 term quadratic $10t$, $8t^2 + 10t$ $12 \{= 0\}$ re acceptable for this mark	A1
	$(8t 6)(t+2) = 0 \qquad t = \dots$ or $(4t 3)(2t+4) = 0 \qquad t = \dots$ or $(4t 3)(t+2) = 0 \qquad t = \dots$		dependent Correct method (e.g. f square or applying s	on the previous M mark factorising, completing the g the quadratic formula) of olving a 3TQ to find $t =$	dM1
	• $x = 4\left(\frac{3}{4}\right) = 3$ and $y = \frac{4}{\left(\frac{3}{4}\right)} = \frac{16}{3}$ • $x = 4\left(-2\right) = -8$ and $y = \frac{4}{\left(-2\right)} = -3$	2	dependent on bo Correct substitution for <i>t</i> into the g and obtains <i>two se</i>	th the previous M marks at least one of their values given parametric equations <i>ts</i> of corresponding values for $x = \dots$ and $y = \dots$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(8, 2\right)$ or $A: x = 3, y =$	$=\frac{16}{3}$ at	nd $B: x = 8, y = 2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
					(5)
(a) Way 2	$x\left(\frac{10+2x}{3}\right) = 16 \qquad \left(\frac{3y}{2}\right)y = \frac{16}{3\left(\frac{16}{x}\right)} 2x = 10 \qquad 3y 2\left(\frac{16}{x}\right) = \frac{16}{3}$	16 10	Either s 3y 2x = 10 into x $y = \frac{k}{x} \text{ or } x = \frac{k}{y},$	substitutes their rearranged y = k or substitutes either k 0, into $3y$ $2x = 10$	M1
			to form an equation	n in either x only or y only	
	$2x^2 + 10x 48 = 0 \text{ or } x^2 + 5x 24 =$	0 or		A correct 3 term quadratic	
	$\frac{2}{3}x^2 + \frac{10}{3}x 16 = 0 \text{ or } \frac{3}{2}y^2 5y 16$	0 = 0	Note: $10x + 2x^{2}$	$x^2 = 48, \ 3y^2 10y = 32 \text{ or}$	A1
	or $3y^2$ 10y $32 = 0$ (<i>can be impli</i>)	ed)	$x^2 + 5x 24 = 0$ and	re acceptable for this mark	
	e.g. $(2x+16)(x \ 3) = 0$ $x =$ or $(x+8)(x \ 3) = 0$ $x =$ or $(3y \ 16)(y+2) = 0$ $y =$		dependent Correct method (e.g. f square or applying solving a 3TQ to fi	on the previous M mark factorising, completing the g the quadratic formula) of and either $x =$ or $y =$	dM1
	$\mathbf{F} = \mathbf{r} = 2$ $\mathbf{u} = 16$ depended	nt on	both the previous M m	arks. Correct substitution	
	1.g. $x = 3$ $y = \frac{16}{8} = 2$ of at least their real obtains	one o rrange s <i>two s</i>	t their values for x or y i ed $3y 2x = 10$ or $y =$ sets of corresponding val	nto either $3y 2x = 10$ or $\frac{k}{x}$ or $x = \frac{k}{y}$, $k = 0$, and uses for $x = \dots$ and $y = \dots$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(8, 2\right)$ or $A: x = 3, y =$	$=\frac{16}{3}$ a	nd <i>B</i> : $x = -8, y = -2$	Identifies the correct coordinates for A and B	A1 cao
				I	(5)
(b)	$\left(\frac{3+(8)}{2},\frac{\frac{16}{3}+(2)}{2}\right); = \left(\frac{5}{2},\frac{5}{3}\right)$		Uses t from part (a) to	heir (x_1, y_1) and (x_2, y_2) apply $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e.	M1;
				Correct answer	A1
					(2)
					7

		Question 4 Notes						
4. (a)	SC	SC If the two previous M marks have been gained then award Special Case ddM1 for finding their correct points by writing either $x = 3$, $y = \frac{16}{9}$ or $x = -8$, $y = -2$ or $\left(3, \frac{16}{9}\right)$ or $\left(3, \frac{16}{9}\right)$						
		their correct points by writing either $x = 3$, $y = \frac{16}{3}$ or $x = -8$, $y = -2$ or $\left(3, \frac{16}{3}\right)$ or $\left(-8, -2\right)$						
	Note	A decimal answer of e.g. $A(3, 5.33), B(8, 2)$ (without a correct exact answer) is 2 nd A0						
	Note	Writing coordinates the wrong way round						
		E.g. writing $x = 3$, $y = \frac{16}{3}$ and $x = -8$, $y = -2$ followed by $A\left(\frac{16}{3}, 3\right)$, $B\left(-8, -2\right)$ is $2^{nd} A0$						
	Note	Imply the dM1 mark for <i>writing down</i> the <i>correct</i> roots for <i>their</i> quadratic equation. E.g.						
		• $2x^2 + 10x$ $48 = 0$ or $x^2 + 5x$ $24 = 0$ or $\frac{2}{3}x^2 + \frac{10}{3}x = 16 \rightarrow x = 3$, 8						
		• $\frac{3}{2}y^2$ 5y 16 = 0 or $3y^2$ 10y $32 = 0 \rightarrow y = \frac{16}{3}$, 2						
		• $8t^2 + 10t = 12$ or $4t^2 + 5t$ $6 = 0 \rightarrow t = \frac{3}{4}$, 2						
	Note	For example, give dM0 for						
		• $8t^2 + 10t = 12$ or $4t^2 + 5t$ $6 = 0 \rightarrow t = \frac{1}{4}$, 2 [incorrect solution]						
		with no intermediate working.						
	Note	You can also imply the 1 st A1 dM1 marks for either						
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) 2x = 10 \to x = 3, 8$						
		• $\left(\frac{3y \ 10}{2}\right)y = 16 \text{ or } 3y \ 2\left(\frac{16}{y}\right) = 10 \rightarrow y = \frac{16}{3}, 2$						
		• $3\left(\frac{4}{t}\right)$ $2(4t) = 10 \rightarrow x = 3, 8$						
		• $3\left(\frac{4}{t}\right) 2(4t) = 10 \rightarrow y = \frac{16}{3}, 2$						
		with no intermediate working.						
	Note	You can imply the 1 st A1 dM1 ddM1 marks for either						
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) 2x = 10 \rightarrow x = 3, 8 \text{ and } y = \frac{16}{3}, 2$						
		• $3\left(\frac{4}{t}\right) 2(4t) = 10 \rightarrow x = 3, 8 \text{ and } y = \frac{16}{3}, 2$						
		with no intermediate working.						
		You can then imply the final A1 mark if they correctly identify the correct pairs of values or						
		coordinates which relate to the point A and the point B .						
	Note	Give 2 nd A0 for a final answer of both $A\left(3,\frac{16}{3}\right)$, $B\left(-8,-2\right)$ and $A\left(-8,-2\right)$, $B\left(3,\frac{16}{3}\right)$,						
(b)	Note	A decimal answer of e.g. $(2.5, 1.67)$ (without a correct exact answer) is A0						
	Note	Allow A1 for $\left(\begin{array}{c} \frac{5}{2}, \frac{10}{6}\right)$ or $\left(\begin{array}{c} 2\frac{1}{2}, 1\frac{2}{3}\right)$ or exact equivalent.						

Question Number	Scheme				Notes			Marks	
5.	Given $f(x) = 30 \frac{7}{\sqrt{x}}$ x^5 , $x > 0$ and root of $f(x) = 0$ lies in the interval [2, 2.1]								
(a)	f(2) = 2.9497 or $f(2.1) = 6.0105$				Attempts	to evaluat	te <i>at least one</i> of and ex	f(2) or $f(2.1)valuates f(2.05)$	M1
Way 1	f(2.05) =	1.31	60		f(2)	f(2) or $f(2.1)$ correct awrt (or truncated) to 1 sf and $f(2.05)$ correct awrt (or truncated) to 1 sf			A1
	f(2.025) =	=				depe Evalu	endent on the privates $f(2.025)$ (a	revious M mark nd not $f(2.075)$	dM1
				f(2.025)correct awr	(or trunca	ated) to 1 sf and	correct interval.	
	S(2,025)	0.00	046		Al	low 2.025	$5 \le x \le 2.05$ or 2	2.025 < x < 2.05	
	1(2.025)	= 0.86	846	or 2.02	$25 \leqslant lpha \leqslant 2.0$	5 or 2.025	5 < < 2.05 or	[2.025, 2.05] or	
	so interva	l is (2	025 2.05)	(2.	025, 2.05)eq	uivalent in	n words. Condo	ne 2.025 2.05	A1
	or (2.025	. 2.050))	Allow	a mixture of	"ends". I	Do not allow inco	orrect statements	
	(,		such as 2.	05 < < 2.0	25 or (2.0	5, 2.025) or 2.03	5 2.025 unless	
				they are re	ecovered. Ig	nore the su	ubsequent iterati	on of f(2.0375)	
		Note In th	e that some is case the]	candidates oi M marks can	nly indicate still score as	the sign of defined l	f f and not its va but not the A m	alue. arks.	(4)
(a)		Com	mon appro	ach in the for	m of a table	(use the i	mark scheme al	bove)	
Way 2	а		f(<i>a</i>)	b		f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$	
	2		2.9497.	2.1	6	.0105	2.05	1.3160	
	2		2.9497.		5 1	3160	2.025	0.86846	
		SC	o interval is	2.025 < < 2	2.05 would s	core full	marks in part (a)	
(b)	f ()	7	$\frac{3}{2}$ = 4	At least one of either $\frac{7}{\sqrt{x}} \rightarrow \pm Ax^{\frac{3}{2}}$ or $x^5 \rightarrow \pm Bx^4$ where A and B are non-zero constants.				M1	
	1(x) =	$\frac{1}{2}^{x}$	- 5x	At least one of either $\frac{7}{2}x^{\frac{3}{2}}$ or $5x^4$ simplified or un-simplified					A1
					Correct differentiation simplified or un-simplified				A1
		f(2)		2.94974746	8	depe	endent on the pr	revious M mark	
	$\begin{cases} \alpha \simeq 2 - 1 \end{cases}$	$\overline{\mathbf{f'(2)}}$	$\Rightarrow \alpha \simeq 2 -$	-81.237436	87	valid at	their values of	f(2) and $f(2)$	dM1
	```					dep	endent on all 4	previous marks	. 1
	{ = 2.03	863101	99}	= 2.04 (2 dp	)	-	2.04 on th	eir first iteration	Al cso
		1100				(]	Ignore any subse	quent iterations)	cao
	Correct	diffei	centiation for Correct and	ollowed by a d swer with no	correct answ working sco	er of 2.04	l scores full mai arks in nart (b)	rks in part (b)	(5)
			Correct un	swer with <u>no</u>	working see				9
					Question	5 Notes			
<b>5.</b> (a)	Note	Give	$2^{nd}$ M0 for	evaluating bot	th f(2.025) a	nd f(2.07	75)		
	Note	Do n	ot allow "in	terval = f(2.0)	(25) to f(2.0	$\overline{5}$ " unless	s recovered.		
	Note	A me	ethod of eva	luating f(2.05	5) followed b	by $f(2.025)$	5) with <i>no evide</i>	<i>nce</i> of evaluating	
		at lea	ust one of ei	ther $f(2)$ or $f(2)$	f(2.1) is M0	A0M0A0			

		Question 5 Notes Continued								
<b>5.</b> (b)	Note	Incorrect differentiation followed by their estimate of with no evidence of applying the								
		NR formula is final dM0A0.								
	Final	This mark can be implied by applying at least one correct <i>value</i> of either $f(2)$ or $f(2)$								
	<b>dM1</b> in 2 $\frac{f(2)}{f(2)}$ . So just 2 $\frac{f(2)}{f(2)}$ with an incorrect answer and no other evidence									
		scores final dM0A0.								
	<b>Note</b> You can imply the M1A1A1 marks for algebraic differentiation for either									
• $f(2) = \frac{7}{2}(2)^{\frac{3}{2}} 5(2)^4$										
		• f (2)applied correctly in $\alpha \simeq 2 - \frac{30 - 7(2)^{-\frac{1}{2}} - (2)^5}{-\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4}$								
	2									
	<b>Note</b> Differentiating INCORRECTLY to give $f(x) = -\frac{1}{2}x^{-2} - 5x^4$ leads to									
		$\alpha \simeq 2 - \frac{2.949747468}{-81.75} = 2.036082538 = 2.04 \ (2 \text{ dp})$								
		This response should be awarded M1A1A0M1A0								

Question Number	Scheme		Notes	Marks		
<b>6.</b> (a)	$r^{n} r^{2}(r+1) = r^{n} r^{3} + r^{2} r^{2}$	{No	te: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$			
	$=\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$	Atte substitute	M1			
			Correct expression (or equivalent)	A1		
	$= \frac{1}{12}n(n+1) \Big[ 3n(n+1) + 2(2n+1) \Big]$	At	dependent on the previous M mark tempt to factorise at least $n(n+1)$ having oted to substitute both standard formulae.	dM1		
	$= \frac{1}{12}n(n+1) \Big[ 3n^2 + 7n + 2 \Big]$		{this step does not have to be written}			
	$= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Correct completion with no errors. <b>Note:</b> $a = 12, b = 1$	A1 cso		
				(4)		
(b) Way 1	$\left\{\sum_{r=25}^{49}r^2(r+1)\right\}$		Attempts to find either $f(49)  f(24) \text{ or } f(49)  f(25).$ This mark can be implied.	M1		
	$ = \left(\frac{1}{12}(49)(50)(51)(148)\right)  \left(\frac{1}{12}(24)(25)(26)(73)\right) $ $ = 1541050  94900 = 1446150 $ Correct numerical expression for f(49) f(24) which can be simplified or un-simplified. Note: This mark can be implied by seeing 1446150					
	$\left\{\sum_{r=25}^{49} \left(r^2(r+1)+2\right)\right\}$ ="1446150" + 25(2); = 1446200	Adds or clea	25(2) or equivalent to their $r^{2}(r+1)$ r=25 ar evidence that $r^{49}_{r=25} = 2(49) = 2(24)$ or 50	M1		
			1446200	A1 cao		
(b)				(4)		
(b) Way 2	$\left\{\sum_{r=25}^{49} \left(r^2(r+1)+2\right)\right\} = \left(\frac{1}{\underline{12}}(49)(50)(51)(143)(143)(143)(143)(143)(143)(143)(14$	(8) + 2(49)	$\left(\frac{\frac{1}{12}(24)(25)(26)(73) + 2(24)}{2(24)}\right)$			
	$=(\underline{1541050}+\underline{98})$ (9)	94900 + 48) =	= 1541148 94948 = 1446200			
	Attempts to find eithe	r f(49) f(2)	24) or $f(49)$ $f(25)$	M1		
	Correct numerical expression for $f(49)$ $f(24)$ which can be simplified or un-simplified. <b>Note:</b> This mark can be implied by ( <u>1541050</u> +) ( <u>94900</u> +) or 1541148 94948					
	Adds 50 or equivalent to their $r^{49}$ $r^2(r+1)$ or clear evidence that $r^{49}$ $2 = 2(49)$ 2(24) or 50 $r^{-25}$					
	<b>Note:</b> This mark can be implied by	( + 2(49))	$(\underline{\dots} + \underline{2(24)})$ or 1541148 94948	A 1		
		1440200		Al cao		
				8		

Question Number		Scheme	Notes	Marks				
6. (b) Way 3	$\left\{\sum_{r=25}^{49} \left(r^2\right)\right\}$	$(r+1)+2\bigg)\Bigg\} = \sum_{r=25}^{49} r^3 + \sum_{r=25}^{49} r^2 + \sum_{r=25}^{49} 2$						
	= (	$= \underbrace{\left(\frac{1}{4}(49)^2(50)^2 - \frac{1}{4}(24)^2(25)^2\right) + \left(\frac{1}{6}(49)(50)(99) - \frac{1}{6}(24)(25)(49)\right)}_{6} + \underbrace{\left(98 - 48\right)}_{6}$						
	= (1	<u>500625 90000) + (40425 4900)</u> + <u>50</u> =	$\underline{1410625 + 35525} + \underline{50} = 1446200$					
	or = $r=1$	$\binom{9}{25}(r^3+r^2+2)$						
	= (	$\left[\frac{\frac{1}{4}(49)^2(50)^2 + \frac{1}{6}(49)(50)(99)}{4} + 2(49)\right]  \left(\frac{1}{4}\right]$	$(24)^{2}(25)^{2} + \frac{1}{6}(24)(25)(49) + 2(24)$					
	= (1	500625 + 40425 + 98)  (90000 + 4900 + 4900)	<u>48</u> ) = 1541148 94948 = 1446200					
		Attempts to find either $f(49)$ $f(2)$	24) or f(49) f(25)	M1				
	Correct	numerical expression for $f(49)$ $f(24)$ wh	ich can be simplified or un-simplified.	A1				
	Adds 50 or equivalent to their $r^{49}$ $r^2(r+1)$ or clear evidence that $r^{49}$ $r^2(r+2)$ $r^2(r+1)$ or clear evidence that $r^{49}$ $r^2(r+2)$ $r^2($							
		1446200		A1 cao				
		Questio	n 6 Notes	(4)				
<b>6.</b> (a)	Note	Applying e.g. $n=1, n=2$ to the printed e	quation without applying the standard for	mulae				
		to give $a = 12, b = 1$ is M0A0M0A0						
	Alt 1	<b>Alt Method 1:</b> Using $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{3}{4}n^2$	$\frac{1}{6}n \qquad \frac{3}{a}n^4 + \frac{(9+b)}{a}n^3 + \frac{(6+3b)}{a}n^2 + \frac{2b}{a}$	<i>n</i> o.e.				
	dM1	Equating coefficients to find both $a = \dots a$	and $b = \dots$ and at least one of $a = 12, b =$	1				
	A1 cso	Finds $a = 12$ , $b = 1$ and demonstrates the id	lentity works for all of its terms.					
	Alt 2	<b>Alt Method 2:</b> $\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2)$	$(n+1)$ $\frac{1}{a}n(n+1)(n+2)(3n+b)$					
	dM1	Substitutes $n = 1$ , $n = 2$ , into this identity of	b.e. to find both $a = \dots$ and $b = \dots$					
		and at least one of $a = 12, b = 1$						
	AI	$\frac{1}{1} = \frac{1}{2}, \ u = 1, $	1 1					
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{5}{4}n^2$	$+\frac{1}{6}n$ or $\frac{1}{12}n(3n^3+10n^2+9n+2)$					
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n^4)$	(n+1)(n+2)(3n+1) from no incorrect work	ing.				
1	1	1						

		Question 6 Notes Continued							
<b>6.</b> (b)	Note	Give 1 st M1 1 st A0 for applying $f(49) = f(25)$ . i.e. 1541050 $111150 \{= 1429900\}$							
	Note	You cannot follow through their incorrect answer from part (a) for the 1 st A1 mark.							
	Note	Give M1A0M1A0 for applying $\left[f(49) + 2(49)\right] \left[f(25) + 2(24)\right]$							
		i.e. 1541148 111198 $\{= 1429950\}$							
	Note	Give M1A0M0A0 for applying $[f(49) + 2(49)] [f(25) + 2(25)]$							
		i.e. $1541148  111200 \{= 1429948\}$							
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50)$ $(24)^2(25) = 120050$ 14400 = 105650							
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50)$ $(25)^2(26) = 120050$ 16250 = 103800							
	Note	Give M0A0M0A0 for listing individual terms.							
		e.g. $16250 + 18252 + \dots + 112896 + 120050 = 1446200$							
	Note	Give 2 nd M0 for lack of bracketing in							
		$\frac{1}{12}(49)(50)(51)(148) + 2(49)  \frac{1}{12}(24)(25)(26)(73) + 2(24) \text{ unless recovered}$							
	Note	Give M0A0M0A0 for writing down 1446200 without any working.							
	Note	Applying f(49) f(24) for $\frac{1}{4}n(n+1)(n+2)(3n+1)$ is 4623150 284 700 = 4338450							
		is 1 st M1 1 st A0							

Question Number		Scheme		Notes			
7.	$f(z) = z^4$	$+4z^3+6z^2+4z+a$ , <i>a</i> i	s a real const	ant. $z_1 = 1 + 2i$ satisfies $f(z) = 0$			
(a)		$\{z_2 = \}$ 1 2i		1 2i	B1		
					(1)		
(b)(i)				Attempt to expand $(z (1+2i))(z (1 2i))$			
				or $(z \ (1+2i))(z \ (\text{their complex } z_2))$			
			or a	ny valid method <i>to establish a quadratic factor</i>	M1		
		$z^2$ 2z+5	e	g. $z = 1 \pm 21$ $z$ $1 = \pm 21$ $z^2$ $2z + 1 = 4$			
				to give $z^2 \pm (\text{their sum})z + (\text{their product})$			
				$-2^2$ 2=+5	A 1		
				Attempts to find the other quadratic factor. $z = 2z + 5$	711		
			e.g. using l	ong division to obtain either $z^2 \pm kz +, k = 0$			
	$f(\mathbf{x}) = (\mathbf{z})$	$2^{2} 2^{7} + 5)(7^{2} + 67 + 13)$		or $z^2 \pm z + , 0$ , can be 0	M1		
	1(x) - (2)	$22 \pm 3)(2 \pm 02 \pm 13)$	or factorisi	ing e.g. $f(z) = (z^2  2z+5)(z^2 \pm kz \pm c), k = 0$			
			or $f(z)$	$=(z^2  2z+5)(z^2 \pm z \pm ),  0,  \text{can be } 0$			
				$z^2 + 6z + 13$	A1		
	$\left\{z^2+6z+6z+6z+6z+6z+6z+6z+6z+6z+6z+6z+6z+6z+$	$+13 = 0$ }					
	Either						
		$6 \pm \sqrt{36}  4(1)(13)$		D (1			
	• 2	=2(1)		formula or completing the square for solving	dM1		
	• (.	$(z+3)^2$ 9+13=0 z	=	a 3TQ on their 2 nd quadratic factor			
	$\left\{z=\right\}$ 3	8+2i, 3 2i		3+2i and 3 2i	A1		
					(6)		
(ii)	$\{a=\}65$			65 or $a = 65$ stated anywhere in (b)	B1		
					(1)		
			0	uestion 7 Notes	o o		
<b>7.</b> (b)(i)	Note	No working leading to	x = 3 + 2i	3 2i is M0A0M0A0M0A0.			
	Note	You can assume $x = z$	for solutions	s in this question.			
	Note	Give dM1A1 for $z^2 + 6$	6z + 13 = 0	z = 3 + 2i, 3 2i with no intermediate wor	king.		
	Note	Special Case: If their	second 3 terr	<i>m quadratic</i> factor <b>can</b> be factorised then			
		give Special Case dM1	for correct f	factorisation leading to $z = \dots$			
	Note	Otherwise, give 3 rd dM	0 for applyir	ng a method of factorising to solve their 3TQ.			
	Note	<b>Reminder:</b> Method M	<b>Reminder:</b> Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "				
		Formula:	aat formula (	(with values for a b and a)			
		<b>Completing the squar</b>	e	with values for $a, b$ and $c$			
		$\begin{pmatrix} b \end{pmatrix}^2$	-				
		$\left  \left( z \pm \frac{\sigma}{2} \right) \pm q \pm c = 0, \right $	$q \neq 0$ , leadir	ng to $z = \dots$			

Question Number	Scheme		Notes	Marks		
8.	$C: y^2 = 36x, \ P(9)$	$p^2, 18p$	lies c	on $C$ , where $p$ is a constant.		
(a)	$y = 6x^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(6)x^{\frac{1}{2}} = \frac{3}{\sqrt{x}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k  x^{-\frac{1}{2}}$		
	$y^2 = 36x \qquad 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 36$	6		$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 18 \left(\frac{1}{18p}\right)$	)		their $\frac{dy}{dt} = \frac{1}{\text{their } \frac{dx}{dt}}$		
	So at <i>P</i> , $m_T = \frac{1}{p}$			Correct calculus work leading to $m_T = \frac{1}{p}$	A1	
	$v \ 18p = \frac{1}{2}(x \ 9p^2)$	Correct s	straig	ght line method for an equation of a <b>tangent</b>		
	or $v = \frac{1}{p}x + 9p$	where $m_T(m_N)$ is found by using calculus.			M1	
	$y = p^{x + y}p$			<b>Note:</b> $m_T$ must be a function of $p$		
	leading to $py  x = 9p^2$ (*)	Correct solution only			A1 *	
( <b>b</b> )				a = 0	(4)	
(0)	(Directrix: $x = 9$ ) $a = 9$	or $a = 9$ stated anywhere in this question			B1	
	Tangant goas through $(-a, 6)$				(1)	
(C)	Substitutes their value $x = -a^{\prime\prime}$ or their value $x = -a^{\prime\prime}$					
	$6p + 9 = 9p^2$	and $y = 6$ into either $py = x = 9p^2$ or $py = x = 9p^2$			M1	
	$9p^2$ 6p 9=0 or $3p^2$ 2p 3=	= 0		17 1 17 1		
	E.g. $p = \frac{6 \pm \sqrt{36 - 4(9)(-9)}}{2(9)}$			<b>dependent on the previous M mark</b> Correct method of solving their 3TQ	dM1	
	{as $p > 0$ } $p = \frac{1 + \sqrt{10}}{3}$	<i>p</i> =		$=\frac{1+\sqrt{10}}{3}$ or $\frac{6+\sqrt{360}}{18}$ or $\frac{6+6\sqrt{10}}{18}$ etc.	A1	
	<b>Note:</b> Give A0 for giving two values for <i>p</i> as their answer to part (c)					
(d)	$x = 9\left(\frac{1+\sqrt{10}}{3}\right)^2, y = 18\left(\frac{1+\sqrt{10}}{3}\right)$		I	Uses a <b>real</b> value of <i>p</i> , which is the result of substituting $(\pm a, 6)$ into $py  x = \pm 9p^2$ , and substitutes <i>p</i> into at least one of either $x = 9p^2$ or $y = 18p$	M1	
	$(11+2\sqrt{10}, 6+6\sqrt{10})$ or $(11+2\sqrt{10}, 6(1+\sqrt{10}))$		Either $x = 11 + 2\sqrt{10}$ or $y = 6 + 6\sqrt{10}$ or $y = 6(1 + \sqrt{10})$		A1	
			Correct coordinates of $P$ . Condone $x =, y =$			
	<b>Note:</b> Give 2 nd A0 for two sets of coordinates for <i>P</i>				(3)	
					11	

Question Number	Scheme			Marks		
<b>9.</b> (a)	$\left\{ \left  z \right  = \right\} \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2}; = \frac{\sqrt{5}}{5} \text{ or } \frac{1}{\sqrt{5}}$	or $\sqrt{\frac{1}{5}}$		M1		
			Correct exact answer			
	$arg z = \arctan(2) = 1.1071487$	$18 \} = 1.1$	= $1.11 (2 dp)$ 1.11 cao or 5.18 ca		B1	
					(3)	
(b) Way 1	$w = \frac{\mathbf{i}}{z} = \frac{\mathbf{i}}{\left(\frac{1}{5} - \frac{2}{5}\mathbf{i}\right)} \qquad \mathbf{or} \qquad w =$	$\frac{5 \text{ i}}{5z} = \frac{5 \text{ i}}{(1 \text{ 2i})}$	Corre	Correct method of making $w$ the subject and substituting for $z$		
	$=\frac{i(\frac{1}{5}+\frac{2}{5}i)}{(1-2i)(1-2i)}$ = -	= <u>5</u> i(1+2i)		dependent on the previous M mark Multiplies numerator and denominator		
	$(\frac{1}{5}, \frac{2}{5}1)(\frac{1}{5} + \frac{2}{5}1)$ (	1 2i(1+2i)	of righ	of right hand side by $(\frac{1}{2} + \frac{2}{2}i)$ or $(1+2i)$		
	$=\frac{\frac{2}{5}+\frac{1}{5}}{\frac{1}{5}}$ = -	10 +5 i	C	to give an expression in terms		
	$\frac{1}{25} + \frac{4}{25}$	1+4	of which contains a real denominato			
	= 2 + i =	2 + i		2 + i or i 2	A1	
					(3)	
(b)	$(\frac{1}{5}  \frac{2}{5}i)(a+bi) = i  \frac{1}{5}a + \frac{1}{5}bi$	$\frac{2}{5}ai + \frac{2}{5}b =$	i	Substitutes z and w into $zw = i$ ,		
Way 2	expands <i>zw</i> and atte				M1	
	$\frac{1}{5}a + \frac{2}{5}b = 0$ or $\frac{2}{5}a + \frac{1}{5}b =$		e	part of the resulting equation		
			dej	pendent on the previous M mark		
	$\frac{1}{5}a + \frac{2}{5}b = 0,  \frac{2}{5}a + \frac{1}{5}b =$	Obtains	an equatio	n in terms of $a$ and $b$ and obtains a	dM1	
	a =  or  b =	second equ	ation in ter	rms of $a, b$ and $and$ solves them	aivii	
		simultan	eously to g	Ive at least one of $a = \dots$ or $b = \dots$	A 1	
	$\{a = 2, b = \} w = 2 +$	1		2 + 1 or $1 - 2$	AI	
(c)	$\left\{\frac{4}{2}(z+w)=\right\}\frac{4}{2}\left(\left(\frac{1}{2},\frac{2}{2}\right)+\left(\frac{2}{2}+\frac{1}{2}\right)\right):=2$ i			Substitutes z, and their winto $\frac{1}{3}(z+w)$		
		10 // 5		$\frac{2}{5}i$ or $\frac{6}{15}i$ or 0.4i o.e.		
(1)		<u> </u>			(2)	
(d)	Im♠	Criter	<u>1a</u> plote (1	2) in quadrant 4		
		•	piots $\left(\frac{1}{5}\right)$	$\frac{1}{5}$ in quadrant 4		
	$C(-\frac{1}{5},\frac{1}{10})$ $B(0,\frac{1}{10})$	•	• plots $(0, \frac{1}{10})$ on the positive imaginary axis			
		•	<ul> <li>plots (¹/₅, ¹/₁₀) in quadrant 2</li> <li>plots (0, ²/₅) on the negative imaginary axis Satisfies at least two of the four criteria</li> </ul>			
		.e •				
	$D(0, -\frac{2}{5})$ $A(\frac{1}{5}, -\frac{2}{5})$	Sat sc	Satisfies all four criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.			
					(2)	
					10	

	Question 9 Notes				
<b>9.</b> (a)	Note	M1 can be implied by awrt 0.45 or a truncated 0.44			
	Note	Give A0 for 0.4472 without reference to $\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$			
	Note	Give B0 for 1.11 followed by a final answer of 1.11			
(b)	Note	<b>Be aware</b> that $\frac{1}{(\frac{1}{5} - \frac{2}{5}i)} = 1 + 2i$			

Question Number	Scheme		Notes			Marks
<b>10.</b> (a)	$\begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$	$\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{pmatrix}$	Correct matrix which is expressed in exact surds		B1	
	(					(1)
(b)	$\left(\begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{array}\right)$	$ \frac{\sqrt{3}}{2} \\ \frac{1}{2} $	Correct matrix which is expressed in exact surds			B1
						(1)
(c)	$ \left\{                                    $	$ \begin{pmatrix} 1 \\ 2 \\ - \end{pmatrix} = \begin{cases} \left( \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \end{array} \right) \left( \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \end{cases} $	= Multiplies their matrix from part (a) by their matrix from part (b) [either way round] and finds at least one element in the resulting matrix		M1	
	$\left(\frac{\sqrt{2}}{\sqrt{2}}\right)$	$= \begin{pmatrix} \frac{\sqrt{2} & \sqrt{6}}{4} & \frac{\sqrt{2} & \sqrt{6}}{4} \\ \frac{\sqrt{2} + \sqrt{6}}{4} & \frac{\sqrt{2} & \sqrt{6}}{4} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1 & \sqrt{3}}{2\sqrt{2}} & \frac{1 & \sqrt{3}}{2\sqrt{2}} \\ \frac{\sqrt{3} + 1}{2\sqrt{2}} & \frac{1 & \sqrt{3}}{2\sqrt{2}} \end{pmatrix}$		At	A1	
	$= \left(\frac{4}{\sqrt{2} + 4}\right)$				A1	
						(3)
(d)	Rotation	Rotation about (0, 0)		Rotation (condone turn) and about $(0, 0)$ or about $Q$ or about the origin		
				$\frac{105 \text{ degrees or } \frac{7}{2} \text{ (anticlockwise)}}{105 \text{ degrees or } \frac{7}{2} \text{ (anticlockwise)}}$		
	105 degrees (anticlockwise)		or 255 degrees clockwise or $\frac{17}{12}$ clockwise			B1 o.e.
		Note: Cive 2 nd E	$\frac{1}{20}$ for 1	$\frac{01233}{05}$ degrees clock	$\frac{12}{12}$ clockwise	(2)
		Note: Give B0B0 for	combi	nations of transf	ormations	(2)
(e)	Either					
	•	• $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ and states $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$			dB1	
	•	• $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$				
	cos75°	$75^\circ = \cos 105^\circ = \left(\frac{1}{2\sqrt{2}}\right)$ or $\frac{\sqrt{3}}{2\sqrt{2}}$ or $\frac{\sqrt{6}}{4}$ States $\cos 75^\circ = \cos 105^\circ$ and deduces a correct exact value for $\cos 75^\circ$			B1	
						(2)
	Ouestion 10 Natas					9
	Question 10 Notes					
<b>10.</b> (e)	ALT 1	ALT 1 Comparing their matrix found in part (c) with a correct $\begin{bmatrix} \cos 75 & \sin 75 \\ \sin 75 & \cos 75 \end{bmatrix}$				
		(representing a rotation $105^{\circ}$ anti-clockwise about $O$ ) gives				
		$\sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ (with the 1 st A mark scored in part (c))			B1	
		$\cos 75^\circ = \left(\frac{1}{2\sqrt{2}}\right) \text{ or } \frac{\sqrt{3}}{2\sqrt{2}} \text{ or } \frac{\sqrt{6}}{\sqrt{2}} \frac{\sqrt{2}}{4}$			B1	
					(2)	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom